Tryptophan hydroxylase-1 regulates immune tolerance and inflammation
نویسندگان
چکیده
Nutrient deprivation based on the loss of essential amino acids by catabolic enzymes in the microenvironment is a critical means to control inflammatory responses and immune tolerance. Here we report the novel finding that Tph-1 (tryptophan hydroxylase-1), a synthase which catalyses the conversion of tryptophan to serotonin and exhausts tryptophan, is a potent regulator of immunity. In models of skin allograft tolerance, tumor growth, and experimental autoimmune encephalomyelitis, Tph-1 deficiency breaks allograft tolerance, induces tumor remission, and intensifies neuroinflammation, respectively. All of these effects of Tph-1 deficiency are independent of its downstream product serotonin. Because mast cells (MCs) appear to be the major source of Tph-1 and restoration of Tph-1 in the MC compartment in vivo compensates for the defect, these experiments introduce a fundamentally new mechanism of MC-mediated immune suppression that broadly impacts multiple arms of immunity.
منابع مشابه
Aspects of Tryptophan and Nicotinamide Adenine Dinucleotide in Immunity: A New Twist in an Old Tale
Increasing evidence underscores the interesting ability of tryptophan to regulate immune responses. However, the exact mechanisms of tryptophan's immune regulation remain to be determined. Tryptophan catabolism via the kynurenine pathway is known to play an important role in tryptophan's involvement in immune responses. Interestingly, quinolinic acid, which is a neurotoxic catabolite of the kyn...
متن کاملThe effect of Aerobic Training on Serotonin and Tryptophan Hydroxylase of Prefrontal Cortex in type 2 Diabetic Rats
Background & Aims: Type 2 diabetes (T2D) is a self-management disease and depression is a common problem related to it. One of the causes of depression is serotonin (5-HT) depleted. The enzyme tryptophan hydroxylase (TPH) is known as limiting enzyme in the production of 5-HT in the brain. Aerobic exercise also has proven benefits in treating and reducing the incidence of chronic diseases such a...
متن کاملThe role of the kynurenine pathway of tryptophan metabolism in cardiovascular disease
Coronary heart disease and stroke, the deadliest forms of cardiovascular disease (CVD), are mainly caused by atherosclerosis, a chronic inflammatory disease of the artery wall driven by maladaptive immune responses in the vessel wall. Various risk factors for CVD influence this pathogenic process, including diabetes mellitus, hypertension, dyslipidaemia, and obesity. Indoleamine 2,3-dioxygenase...
متن کاملThymosin 1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance
Thymosin 1 (T 1), a naturally occurring thymic peptide, primes dendritic cells (DCs) for antifungal T-helper type 1 resistance through Toll-like receptor 9 (TLR9) signaling. AsTLR9signalingalsoactivatesthe immunosuppressive pathway of tryptophan catabolism via indoleamine 2,3-dioxygenase (IDO), we examined T 1 for possible induction of DC-dependent regulatory effects. T 1 affected T-helper cell...
متن کاملImpact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism
The gut microbiota influences the health of the host, especially with regard to gut immune homeostasis and the intestinal immune response. In addition to serving as a nutrient enhancer, L-tryptophan (Trp) plays crucial roles in the balance between intestinal immune tolerance and gut microbiota maintenance. Recent discoveries have underscored that changes in the microbiota modulate the host immu...
متن کامل